Although autonomous driving technology has made significant advancements, autonomous vehicles tend to be defensive in complex environments such as merging roads, intersections, and roundabouts. Connected autonomous vehicles (CAVs) are expected to behave more naturally even in such complex environments leveraging information obtained through vehicle connectivity, such as neighboring vehicles' position and velocity. This study presents a reinforcement learning-based framework for collision avoidance of a CAV at merging roads. The key idea is to redesign the reward function of previous relevant work so that collision avoidance is realized more in a human-like and predictive manner.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement Learning-Based Collision Avoidance of a Connected and Automated Vehicle at Merging Roads


    Beteiligte:
    Seo, Minseok (Autor:in) / Shin, Seongjae (Autor:in) / Kim, Kyungjoong (Autor:in) / Choi, Kyunghwan (Autor:in)


    Erscheinungsdatum :

    09.08.2023


    Format / Umfang :

    397887 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    METHODS OF VEHICLE COLLISION AVOIDANCE ON CURVED ROADS AND VEHICLE COLLISION AVOIDANCE SYSTEM ON CURVED ROADS

    KIM BYEONG WOO / LEE JUNG EUN / KIM GYOUNG EUN | Europäisches Patentamt | 2022

    Freier Zugriff


    REINFORCEMENT LEARNING-BASED MID-AIR COLLISION AVOIDANCE

    OSIPYCHEV DENIS / MARGINEANTU DRAGOS D | Europäisches Patentamt | 2023

    Freier Zugriff