Reliably predicting future occupancy of highly dynamic urban environments is an important precursor for safe autonomous navigation. Common challenges in the prediction include forecasting the relative position of other vehicles, modelling the dynamics of vehicles subjected to different traffic conditions, and vanishing surrounding objects. To tackle these challenges, we propose a spatio-temporal prediction network pipeline that takes the past information from the environment and semantic labels separately for generating future occupancy predictions. Compared to the current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds and in a relatively complex environment from the nuScenes dataset. Our experimental results demonstrate the ability of spatiotemporal networks to understand scene dynamics without the need for HD-Maps and explicit modeling dynamic objects. We publicly release our occupancy grid dataset based on nuScenes to support further research.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting Future Occupancy Grids in Dynamic Environment with Spatio-Temporal Learning


    Beteiligte:


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    2764913 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Predicting Future Spatiotemporal Occupancy Grids with Semantics for Autonomous Driving

    Toyungyernsub, Maneekwan / Yel, Esen / Li, Jiachen et al. | IEEE | 2024


    Bayesian Learning of Occupancy Grids

    Robbiano, Christopher / Chong, Edwin K. P. / Azimi-Sadjadi, Mahmood R. et al. | IEEE | 2022


    Parking Space Detection with Hierarchical Dynamic Occupancy Grids

    Schmid, M.R. / Ates, S. / Dickmann, J. et al. | British Library Conference Proceedings | 2011


    ENCODING HOMOTOPY CONSTRAINTS IN SPATIO-TEMPORAL GRIDS

    JESPERSEN THOMAS KOELBAEK / KABZAN JURAJ / HEIM MARC DOMINIK et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Parking space detection with hierarchical dynamic occupancy grids

    Schmid, M. R. / Ates, S. / Dickmann, J. et al. | IEEE | 2011