For autonomous vehicles to proactively plan safe trajectories and make informed decisions, they must be able to predict the future occupancy states of the local environment. However, common issues with occupancy prediction include predictions where moving objects vanish or become blurred, particularly at longer time horizons. We propose an environment prediction framework that incorporates environment semantics for future occupancy prediction. Our method first semantically segments the environment and uses this information along with the occupancy information to predict the spatiotemporal evolution of the environment. We validate our approach on the real-world Waymo Open Dataset. Compared to baseline methods, our model has higher prediction accuracy and is capable of maintaining moving object appearances in the predictions for longer prediction time horizons.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting Future Spatiotemporal Occupancy Grids with Semantics for Autonomous Driving


    Beteiligte:


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    2564221 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Occupancy Grids Generation Using Deep Radar Network for Autonomous Driving

    Engelhardt, Nick / Perez, Rodrigo / Rao, Qing | IEEE | 2019



    Predicting Future Occupancy Grids in Dynamic Environment with Spatio-Temporal Learning

    Mann, Khushdeep S. / Tomy, Abhishek / Paigwar, Anshul et al. | IEEE | 2022


    Danger detection using occupancy grids for autonomous systems and applications

    OH SANG-MIN / DEMIROZ BENJAMIN E / PAN GANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    HAZARD DETECTION USING OCCUPANCY GRIDS FOR AUTONOMOUS SYSTEMS AND APPLICATIONS

    OH SANGMIN / DEMIROZ BARIS EVRIM / PAN GANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff