• ACNN extracts spatial features, and strengthens relationships between channels. • ACNN equipped with characteristics of offline training and online learning performs outstandingly against state-of-the-art methods. • We have studied relations between the performance of the tracker and the number of layers. The moderate network achieves a good balance.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Attentional convolutional neural networks for object tracking


    Beteiligte:
    Kong, Xiangdong (Autor:in) / Cao, Xianbin (Autor:in)


    Erscheinungsdatum :

    01.04.2018


    Format / Umfang :

    2086428 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Attentional convolutional neural networks for object tracking

    Kong, Xiangdong / Zhang, Baochang / Yue, Lei et al. | IEEE | 2018


    Convolutional Neural Networks for Object Detection

    Romão, Bruno / Fagotto, Eric | SAE Technical Papers | 2024


    NEURAL NETWORKS WITH ATTENTIONAL BOTTLENECKS FOR TRAJECTORY PLANNING

    BANSAL MAYANK / KIM JINKYU | Europäisches Patentamt | 2021

    Freier Zugriff

    Convolutional Neural Networks for Inference of Space Object Attitude Status

    Badura, Gregory | British Library Conference Proceedings | 2020


    Convolutional Neural Networks for Inference of Space Object Attitude Status

    Badura, Gregory P. / Valenta, Christopher R. / Gunter, Brian | Springer Verlag | 2022