Dynamic on-road driving scenarios require robust methods for planning a safe and feasible vehicle motion coping with both static and dynamic obstacles. Many of the different approaches which have been proposed to tackle this challenge are based on optimal control and employ local continuous or discrete optimization schemes. While discrete methods possess the ability to find reasonable solutions in a search space incorporating local minima, they tend to sacrifice optimality for real-time performance. On the other hand, local continuous methods require suitable initialization to handle the combinatorial nature of on-road driving scenarios but are capable of quickly returning an optimized solution. The presented work proposes a hybrid solution which embraces both strategies to unite their distinct advantages. A discrete optimization scheme is augmented by parametric optimization to achieve both low planning times as well as robust (re-)initialization.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hybrid discrete-parametric optimization for trajectory planning in on-road driving scenarios


    Beteiligte:
    Kunz, Felix (Autor:in) / Dietmayer, Klaus (Autor:in)


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    548868 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hybrid Trajectory Planning for Autonomous Driving in On-Road Dynamic Scenarios

    Lim, Wonteak / Lee, Seongjin / Sunwoo, Myoungho et al. | IEEE | 2021



    TOWARDS RISK MINIMIZING TRAJECTORY PLANNING IN ON-ROAD SCENARIOS

    Ward, Erik / Folkesson, John | British Library Conference Proceedings | 2018


    TRAJECTORY PLANNING IN AUTONOMOUS DRIVING VEHICLES FOR UNFORESEEN SCENARIOS

    JIANG SHU / WU SZU HAO / LIU HAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Hybrid trajectory planning approach for roundabout merging scenarios

    Hidalgo, Carlos / Lattarulo, Ray / Perez, Joshue et al. | IEEE | 2019