We propose a novel path loss estimation method based on deep learning with some newly defined system parameters and images. Estimating the radio wave propagation environment is one of the key techniques for indoor/outdoor high-speed wireless communication. The radio wave propagation environment is basically a multipath environment, and path loss characteristics should be estimated under various environments. The authors have already proposed path loss estimation methods based on machine learning and spatial image data. The purpose of this paper is to further enhance the path loss estimation accuracy by appropriately selecting the input parameters and the CNN/FNN model structure.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning-Based Path Loss Estimation Using Multiple Spatial Data and System Parameters


    Beteiligte:
    Inoue, Kazuya (Autor:in) / Imaizumi, Keita (Autor:in) / Ichige, Koichi (Autor:in) / Nagao, Tatsuya (Autor:in) / Hayashi, Takahiro (Autor:in)


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    906413 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Low-Cost Path Loss Estimation Using Correlation Graph CNN with Novel Feature Parameters

    Imaizumi, Keita / Ichige, Koichi / Nagao, Tatsuya et al. | IEEE | 2023


    Estimation of spatial and spectral parameters of multiple sources

    Porat, B. / Friedlander, B. | Tema Archiv | 1983



    Learning-Based Multiple-Path Prediction for Early Warning

    Sato, Ikuro / Guoqing, Liu | IEEE | 2018


    LEARNING-BASED MULTIPLE-PATH PREDICTION FOR EARLY WARNING

    Sato, Ikuro / Guoqing, Liu | British Library Conference Proceedings | 2018