Terrain perception in complex environment is important for Autonomous Land Vehicle to drive automatically. In order to access the terrain information, in this paper, we present a terrain perception method based on Hidden Markov Model (HMM) which combines LIDAR with machine vision. On the basis of spatial fan-shaped model, terrain feature extraction is performed to acquire the observation model. Hidden markov models describe the vertical structure of the driving space and Viterbi algorithm is used for terrain classification. Then the navigation decision is given based on the perception of the complex environment. Experiment results show that the method can give an accurate environment description for ALV.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Complex terrain perception based on Hidden Markov Model


    Beteiligte:
    Wang, Meiling (Autor:in) / Zuo, Liang (Autor:in) / Yang, Yi (Autor:in) / Yang, Qiangrong (Autor:in) / Liu, Tong (Autor:in)


    Erscheinungsdatum :

    01.10.2014


    Format / Umfang :

    946893 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hidden Markov Model-based population synthesis

    Saadi, Ismaïl | Online Contents | 2016


    Fault Diagnosis Method Based on Hidden Markov Model

    Zhang, Wei | Springer Verlag | 2016


    Gait Recognition Based on Embedded Hidden Markov Model

    Zhang, Q. / Xu, S. | British Library Online Contents | 2010


    Learning Profiles Based on Hierarchical Hidden Markov Model

    Galassi, U. / Giordana, A. / Saitta, L. et al. | British Library Conference Proceedings | 2005