In modern urban and rural road infrastructure, the detection and monitoring of road anomalies such as speed humps and potholes play a crucial role in ensuring road safety and infrastructure maintenance. Speed humps are raised pavement structures designed to slow down vehicles at specific locations, while potholes are depressions or holes in the road surface that can pose hazards to vehicles and pedestrians alike. Detecting these anomalies accurately and efficiently is essential to mitigate associated risks and ensure timely maintenance. Computer vision-based methods use high-resolution cameras and machine learning algorithms to automatically detect and classify road anomalies with greater accuracy and efficiency. This approach enables early detection, real-time monitoring and timely maintenance thus improving road safety. In this paper, a real time implementation of pothole and hump detection system is proposed. The Deep Learning algorithm, YOLOv8 model is used to detect potholes and humps.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Computer Vision-Based Speed Hump and Pothole Detection System for Vehicles


    Beteiligte:
    Y, Harshalatha (Autor:in) / Singhal, Ansh (Autor:in) / Suraj, Aribenchi (Autor:in) / Chandak, Jaya (Autor:in) / Kumar, Aryan (Autor:in)


    Erscheinungsdatum :

    21.03.2025


    Format / Umfang :

    1308422 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pothole Detection Using Computer Vision and Learning

    Dhiman, Amita / Klette, Reinhard | IEEE | 2020


    POTHOLE AND SPEED BUMP DETECTION BASED ON VEHICLE'S BEHAVIORS USING COMPUTER VISION

    BARRERA OSWALDO PEREZ / MORALES GERARDO | Europäisches Patentamt | 2024

    Freier Zugriff

    Road Pothole Detection System Based on Stereo Vision

    Li, Yaqi / Papachristou, Christos / Weyer, Daniel | IEEE | 2018


    A Vision-Based Pothole Detection Using CNN Model

    Kumar, Prashant / Pooja / Chauhan, Naveen et al. | Springer Verlag | 2023


    POTHOLE DETECTION SYSTEM

    KUNDU SUBRATA KUMAR / BANGALORE RAMAIAH NAVEEN KUMAR | Europäisches Patentamt | 2020

    Freier Zugriff