This report explores the implementation of Variational Autoencoders (VAEs) for dimensionality reduction in multivariate statistics. We benchmark VAEs against traditional methods such as PCA, ICA, and KPCA, using datasets including Iris Flowers, Wine, and Breast Cancer. The study further extends the application of VAEs to non-columnar data, specifically medical heartbeat audio recordings. The results demonstrate the strengths and limitations of VAEs in clustering, manifold learning, and anomaly detection, particularly in the context of medical data. Our findings suggest that while VAEs offer flexible non-linear representations, their performance is highly sensitive to the type of activation function used and the nature of the data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Benchmarking Variational Autoencoders for Dimensionality Reduction and Application to Medical Heartbeats Data


    Beteiligte:


    Erscheinungsdatum :

    04.11.2024


    Format / Umfang :

    820478 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

    Schmid, Johannes D. / Hildenbrand, Arne / Gurbuz, Caglar et al. | British Library Conference Proceedings | 2022


    Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

    Hildenbrand, Arne / Gurbuz, Caglar / Schmid, Johannes D. et al. | SAE Technical Papers | 2022


    Variational Autoencoders

    Ghojogh, Benyamin / Crowley, Mark / Karray, Fakhri et al. | Springer Verlag | 2022


    Deep Tracking Portfolios Using Autoencoders and Variational Autoencoders

    Urrego, Daniel Aragón / Nieto, Oscar Eduardo Reyes / Quimbayo, Carlos Andrés Zapata | Springer Verlag | 2024