The problem of estimation for uncertain multisensor linear continuous-time systems is considered. A new suboptimal filtering algorithm is proposed herein. The proposed algorithm is based on the fusion formula for an arbitrary number of local Kalman filters. Each local Kalman filter is fused by weighted sum with scalar weights in the proposed suboptimal filter. The real time implementation of the proposed filter is possible because the scalar weights do not depend on current observations unlike optimal adaptive filter. The given examples, demonstrate the effectiveness and high precision of proposed filter


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Suboptimal Filter for Multisensor Linear Continuous-Time Systems with Uncertainties


    Beteiligte:
    Deepak, Tyagi (Autor:in) / Kim, Du Yong (Autor:in) / Shin, Vladimir (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    727506 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multisensor Suboptimal Fusion Student's $t$ Filter

    Li, Tiancheng / Hu, Zheng / Liu, Zhunga et al. | IEEE | 2023


    Multisensor CPHD filter

    Nannuru, Santosh / Blouin, Stephane / Coates, Mark et al. | IEEE | 2016


    The design of suboptimal linear time-varying systems.

    Athans, M. / Kleinman, D. L. | NTRS | 1968


    Suboptimal Linear Filtering

    EDWARD M. DUEN | AIAA | 1974