The single-sensor probability hypothesis density (PHD) and cardinalized probability hypothesis density (CPHD) filters have been developed in the literature using the random finite set framework. The existing multisensor extensions of these filters have limitations such as sensor-order dependence, numerical instability, or high computational requirements. In this paper, we derive update equations for the multisensor CPHD filter. The multisensor PHD filter is derived as a special case. Exact implementation of the multisensor CPHD involves sums over all partitions of the measurements from different sensors and is thus intractable. We propose a computationally tractable approximation that combines a greedy measurement partitioning algorithm with the Gaussian mixture representation of the PHD. Our greedy approximation method allows the user to control the trade-off between computational overhead and approximation accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multisensor CPHD filter


    Beteiligte:
    Nannuru, Santosh (Autor:in) / Blouin, Stephane (Autor:in) / Coates, Mark (Autor:in) / Rabbat, Michael (Autor:in)


    Erscheinungsdatum :

    2016-08-01


    Format / Umfang :

    1024951 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Track initialization for TOMHT using auxiliary CPHD filter

    Chen, Xin / Tharmarasa, R. / Kirubarajan, T. et al. | IEEE | 2012


    CPHD FILTER ADDRESSING OCCLUSIONS WITH PEDESTRIANS AND VEHICLES TRACKING

    Lamard, L. / Chapuis, R. / Boyer, J. et al. | British Library Conference Proceedings | 2013


    CPHD filter addressing occlusions with pedestrians and vehicles tracking

    Lamard, Laetitia / Chapuis, Roland / Boyer, Jean-Philippe | IEEE | 2013



    A Tractable Forward– Backward CPHD Smoother

    Nagappa, Sharad / Delande, Emmanuel D. / Clark, Daniel E. et al. | IEEE | 2017

    Freier Zugriff