This paper presents a vision-based approach with unsupervised learning for robust, accurate and stable detection of the drivable road to deal with autonomous driving in changing environments. This approach is based on a formulation of stereo with homography as a Maximum A Posteriori (MAP) problem in a Markov Random Field (MRF). Under this formulation, we develop an alternating optimization algorithm that alternates between computing the binary labeling and learning the optimal parameters from the stereo pair itself. The labeling is optimized by minimizing a well-defined energy function that consists of matching energy, smoothness energy and tracking energy. The parameters, including nine homography parameters and four MRF parameters, are learned online by applying a hard Expectation Maximization (EM) algorithm to maximize conditional likelihood. The proposed automatic parameter tuning procedure not only improves the accuracy of road detection but also makes the approach adaptive to changing environments without any a priori knowledge of the road. Experimental results show the optimality as well as adaptability of the proposed approach on a wide variety of challenging roads with changing environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MRF-based road detection with unsupervised learning for autonomous driving in changing environments


    Beteiligte:
    Chunzhao Guo, (Autor:in) / Mita, Seiichi (Autor:in) / McAllester, D (Autor:in)


    Erscheinungsdatum :

    01.06.2010


    Format / Umfang :

    1087233 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    MRF-Based Road Detection with Unsupervised Learning for Autonomous Driving in Changing Environments, pp. 361-368

    Guo, C. / Mita, S. / McAllester, D. et al. | British Library Conference Proceedings | 2010


    Deep Learning-based Road Object Detection for Collision Avoidance in Autonomous Driving

    Sharma, Teena / Chehri, Abdellah / Fofana, Issouf et al. | IEEE | 2024


    Autonomous driving control parameter changing device and autonomous driving control parameter changing method

    SHIMOTANI MITSUO / NAKAMURA YOSHITAKA / MIYAHARA TADASHI et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    LEARNING UNSUPERVISED WORLD MODELS FOR AUTONOMOUS DRIVING VIA DISCRETE DIFFUSION

    ZHANG LUNJUN / XIONG YUWEN / YANG ZE et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Off-road autonomous driving

    LU JIANBO / HROVAT DAVOR DAVID / TSENG HONGTEI ERIC | Europäisches Patentamt | 2017

    Freier Zugriff