A method learns unsupervised world models for autonomous driving via discrete diffusion. The method includes encoding an observation of an actor for a geographic region using an encoder to generate a prior frame of prior tokens. The method further includes processing the prior frame with a spatio-temporal transformer to generate a predicted frame of predicted tokens. The spatio-temporal transformer includes a spatial transformer and a temporal transformer. The method further includes processing the predicted frame to generate a predicted action for the actor. The method further includes decoding the predicted frame to generate a predicted observation of the geographic region.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    LEARNING UNSUPERVISED WORLD MODELS FOR AUTONOMOUS DRIVING VIA DISCRETE DIFFUSION


    Beteiligte:
    ZHANG LUNJUN (Autor:in) / XIONG YUWEN (Autor:in) / YANG ZE (Autor:in) / CASAS ROMERO SERGIO (Autor:in) / URTASUN RAQUEL (Autor:in)

    Erscheinungsdatum :

    27.03.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion



    Transition to unsupervised autonomous driving mode of ADS

    HARDA PETER / BRANSTROM MATTIAS | Europäisches Patentamt | 2023

    Freier Zugriff


    Offline Reinforcement Learning for Autonomous Driving with Real World Driving Data

    Fang, Xing / Zhang, Qichao / Gao, Yinfeng et al. | IEEE | 2022



    TRANSITIONING TO AN UNSUPERVISED AUTONOMOUS DRIVING MODE OF AN ADS

    HARDÅ PETER / BRÄNNSTRÖM MATTIAS | Europäisches Patentamt | 2023

    Freier Zugriff