The joint probabilistic data association (JPDA) filter has a very good tracking performance in dense targets and heavy clutter environments. However, the JPDA filter also has a huge computer load and tends to combine neighboring tracks. In this paper, an improved JPDA algorithm is presented. The main feature of our method is improving the performance of the JPDA algorithm by improving the performance of the tracking gate. The effectiveness of this method is assessed by mathematical analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improved joint probabilistic data association algorithm


    Beteiligte:
    Wang Ming-Hui, (Autor:in) / Peng Ying-Ning, (Autor:in) / You Zhi-Sheng, (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    161201 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    S13 Improved Joint Probabilistic Data Association Algorithm

    Ming-Hui, W. / Zhi-Sheng, Y. / Ying-Ning, P. et al. | British Library Conference Proceedings | 2002


    Joint probabilistic data association

    Blom, H.A.P. / Bloem, E.A. / Nationaal Lucht- en Ruimtevaartlaboratorium | TIBKAT | 1995


    Improved Joint Probabilistic Data Association Multi-target Tracking Algorithm Based on Camera-Radar Fusion

    Wang, Hehe / Li, Sen / Huang, Libo et al. | British Library Conference Proceedings | 2021


    Improved Joint Probabilistic Data Association Multi-target Tracking Algorithm Based on Camera-Radar Fusion

    Zhang, Han / Wang, Hehe / Bai, Jie et al. | SAE Technical Papers | 2021


    Suboptimal joint probabilistic data association

    Roecker, J.A. / Phillis, G.L. | IEEE | 1993