Vehicle path planning problems have been studied for decades. The existing path planning methods are suitable for simple objectives. However, for complex tasks such as planning paths for vehicles considering the effects of pedestrians, traffic lights, etc., it is difficult to design a reasonable cost function for the deterministic algorithm or a reasonable heuristic function for the heuristic algorithm. In this paper, we proposes a path planning model based on traffic light status and traffic condition awareness. When a vehicle arrives at a new road section, it senses the traffic light status, distribution and vehicle positions in the road network on each road section through V2V and V2I communication, and based on this information, we use an A2C-based deep reinforcement learning method to dynamically plan the shortest path for the vehicle in real time. Experiments show that the proposed method works effectively in terms of saving on driving time and waiting time to reach any destinations, compared to the existing solutions.
Path Planning in Urban Environment Based on Traffic Condition Perception and Traffic Light Status
04.11.2022
841802 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Light environment planning management method based on traffic and pedestrian perception information
Europäisches Patentamt | 2025
|Path planning algorithm based on traffic environment robustness discrimination potential field
Europäisches Patentamt | 2023
|Study on Traffic Survey in Urban Traffic Planning
British Library Conference Proceedings | 2019
|Urban Traffic Management and Urban Planning
Trans Tech Publications | 2012
|