In this paper, we propose a distributed control algorithm for Quadrotor UAVs. The main objective is to design practically implementable distributed hierarchical control for coordinated formation flying of UAVs. Based on the use of Ultra-Wideband sensors for localization, the experimental results using a number of nano Crazyflie quadrotors are also reported in the paper by implementing a simplified hierarchical control strategy. The experimental system setup and the basic formation flying control results using Ultra-Wideband sensors pave the way for the full implementation of the proposed distributed hierarchical control algorithms in the future work. The Crazyflie 2.0 quadrotor UAVs produced by Bitcraze are adopted in experiments. The conducted research provides a useful design guideline for applications of UAVs swarms in real situations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Distributed Localization and Control of Quadrotor UAVs Using Ultra-Wideband Sensors


    Beteiligte:
    Mack, Bryce (Autor:in) / Noe, Christopher (Autor:in) / Rice, Trevor (Autor:in) / Ahn, In Soo (Autor:in) / Wang, Jing (Autor:in)


    Erscheinungsdatum :

    01.03.2019


    Format / Umfang :

    17885139 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fault-Tolerant Mapping and Localization for Quadrotor UAVs

    Gilson, Maximillian / Gauthier, Jason / Garcia, Kaylee et al. | AIAA | 2021


    FAULT-TOLERANT MAPPING AND LOCALIZATION FOR QUADROTOR UAVS

    Gilson, Maximillian / Gauthier, Jason / Garcia, Kaylee et al. | TIBKAT | 2021


    Nonlinear landing control for quadrotor UAVs

    Voos, Holger | Tema Archiv | 2009


    Integrating Backstepping Control of Outdoor Quadrotor UAVs

    Bodó, Zsófia / Lantos, Béla | BASE | 2019

    Freier Zugriff

    Noncooperative Game of Distributed Quadrotor UAVs With Multiple Constraints

    Geng, Mei-Jie / Ding, Hua-Feng / Yao, Xiang-Yu et al. | IEEE | 2024