Object classification capabilities and associated reactive swarm behaviors are implemented in a decentralized swarm of autonomous, heterogeneous unmanned aerial vehicles (UAVs). Each UAV possesses a separate capability to recognize and classify objects using the You Only Look Once (YOLO) neural network model. The UAVs communicate and share data through a swarm software architecture using an adhoc wireless network. When one UAV recognizes a particular object of interest, the entire swarm reacts with a pre-programmed behavior. Classification results of people and backpacks using our modified UAV detection platforms are provided, as well as a simulated demonstration of the reactive swarm behaviors with actual hardware and swarm software in the loop.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards a Heterogeneous Swarm for Object Classification


    Beteiligte:


    Erscheinungsdatum :

    01.07.2019


    Format / Umfang :

    1301816 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Beyond Boundaries: Collaborative Task Completion Using Heterogeneous Swarm

    Bandodkar, Rudraksha / Vazhappully, Steven / Malvekar, Akarsh et al. | IEEE | 2024


    Collective Gradient Following with Sensory Heterogeneous UAV Swarm

    Karagüzel, Tugay Alperen / Cambier, Nicolas / Eiben, A. E. et al. | Springer Verlag | 2024


    ADAPTIVE DISTRIBUTION OF A SWARM OF HETEROGENEOUS ROBOTS

    Prorok, Amanda / Ani Hsieh, M. / Kumar, Vijay | BASE | 2016

    Freier Zugriff

    Autonomous swarm of heterogeneous robots for surveillance operations

    Orfanidis, Georgios / Apostolidis, Savvas / Kapoutsis, Athanasios et al. | BASE | 2019

    Freier Zugriff

    Swarm Characteristics Classification Using Neural Networks

    Peltier, Donald W. / Kaminer, Isaac / Clark, Abram H. et al. | IEEE | 2025