In the article, we focus on the robustness of monocular visual-inertial-wheel odometry (VIWO) in urban environments. In the urban environment, the rapid changes in terrain and lighting intensity are the critical factors that impact the robustness of VIWO. To address the issues mentioned above, this article proposes a novel approach of utilizing structural lines to assist in monocular visual-inertial-wheel odometry, coupled with online optimization of IMU-wheel extrinsic optimization on $\mathbb{S}^{2}$ manifold. To compensate for the failure of simple point features in strong exposure scenarios, our system incorporates structural line measurements into a sliding-window pose estimator. Moreover, different movements have different observability effects on the extrinsic parameters of sensors. We consider the observability of the extrinsic parameters between IMU-odometers and introduce online optimization of these parameters to improve the robustness of the system. Compared with other VIO and VIWO methods based on point features, experimental results on KAIST's Complex Urban Dataset and campus dataset show that our method has better performance on accuracy and robustness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Structural Lines Aided Monocular Visual-Inertial-Wheel Odometry With Online IMU-Wheel Extrinsic Optimization on ${\mathbb{S}}^{2}$ Manifold


    Beteiligte:
    Pang, Chenglin (Autor:in) / Luo, Xingjian (Autor:in) / Wang, Jibo (Autor:in) / Fang, Zheng (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    13215687 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    GPS-aided Visual Wheel Odometry

    Song, Junlin / Sanchez-Cuevas, Pedro J. / Richard, Antoine et al. | IEEE | 2023


    Monocular Visual-Inertial-Wheel Odometry Using Low-Grade IMU in Urban Areas

    Jung, Jae Hyung / Cha, Jaehyuck / Chung, Jae Young et al. | IEEE | 2022


    WHEEL ODOMETRY AIDED VISUAL-INERTIAL ODOMETRY FOR LAND VEHICLE NAVIGATION IN WINTER URBAN ENVIRONMENTS

    Huang, Cheng / Jiang, Yang / O Keefe, Kyle | British Library Conference Proceedings | 2020


    WING: Wheel-Inertial Neural Odometry With Ground Manifold Constraints

    Jiang, Chenxing / Zhang, Kunyi / Yang, Sheng et al. | IEEE | 2025


    Radar aided visual inertial odometry initialization

    NIESEN URS | Europäisches Patentamt | 2020

    Freier Zugriff