This article shows cutting-edge computer vision methods employed in advanced vision sensing technologies for medical, safety and security applications, where the human eye represents the object of interest for both the imager and the computer. As the eye scans the environment, or focuses on particular objects in the scene, the processor simultaneously localizes the eye position, tracks its position and movement over time, and infers counter measures such as fatigue level, attention level, and gaze direction in real-time and automatically. The focus of this demonstration is placed on four different algorithms: auto-initialization (RHED), eye position tracking (SIRAT), eye closure recognition (HRA), driver head pose categorization.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Efficient real-time algorithms for eye state and head pose tracking in advanced driver support systems


    Beteiligte:
    Hammoud, R.I. (Autor:in) / Wilhelm, A. (Autor:in) / Malawey, P. (Autor:in) / Witt, G.J. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    178421 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driver head pose tracking with thermal camera [9974-28]

    British Library Conference Proceedings | 2016


    Real-time pose classification for driver monitoring

    Xia Liu, / Youding Zhu, / Fujimura, K. | IEEE | 2002


    DD-POSE - A LARGE-SCALE DRIVER HEAD POSE BENCHMARK

    Roth, Markus / Gavrila, Dariu M. | British Library Conference Proceedings | 2019


    Driver Head Pose Estimation by Regression

    Tessema, Yodit / Höffken, Matthias / Kreßel, Ulrich | Springer Verlag | 2015


    DD-Pose - A large-scale Driver Head Pose Benchmark

    Roth, Markus / Gavrila, Dariu M. | IEEE | 2019