Driver pose estimation is one of the key components for future driver assistance systems since driver pose contains much information about his driving condition such as attention and fatigue levels. To this goal, a system is presented that detects the pose of the driver face in real time under realistic lighting conditions. The goal of the work is to automate the training phase, thereby eliminating the process of entering user information as much as possible. Two learning methods are presented for driver pose estimation. The first method uses unsupervised learning with Kohonen competitive networks, while the second method explores SVR with an appearance-based method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time pose classification for driver monitoring


    Beteiligte:
    Xia Liu, (Autor:in) / Youding Zhu, (Autor:in) / Fujimura, K. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    451709 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    REAL-TIME VIEW CLASSIFICATION FOR DRIVER MONITORING

    Liu, X. / Zhu, Y. / Fujimura, K. et al. | British Library Conference Proceedings | 2002


    Head pose estimation for driver monitoring

    Youding Zhu, / Fujimura, K. | IEEE | 2004


    Head Pose Estimation for Driver Monitoring

    Zhu, Y. / Fujimura, K. / IEEE | British Library Conference Proceedings | 2004


    Real time driver body pose estimation for novel assistance systems

    Martin, Manuel / Stuehmer, Stephan / Voit, Michael et al. | IEEE | 2017


    REAL-TIME DRIVER POSTURE MONITORING SYSTEM

    Europäisches Patentamt | 2024

    Freier Zugriff