In the process of collaborative operations between manned naval vessels and unmanned surface vehicles, the task allocation of unmanned surface vehicles plays a pivotal role, directly impacting the operational effectiveness of the combined task force comprising manned and unmanned vessels. Leveraging the contract network protocol, this research establishes an autonomous collaborative task allocation approach for unmanned surface vehicle fleet by constructing models for unmanned surface vehicle commander work efficiency, unmanned boat performance evaluation, and unmanned boat cost. This method takes into account both human command factors and unmanned surface vehicle factors, ensuring optimized overall allocation efficiency under comprehensive conditions. Simulation results demonstrate the feasibility of this approach, meeting the operational mission requirements of unmanned surface vehicle fleet effectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Task Allocation Method for Unmanned Surface Vehicle Fleet


    Beteiligte:
    Xiong, Jun (Autor:in) / He, Mingxing (Autor:in)


    Erscheinungsdatum :

    19.01.2024


    Format / Umfang :

    1923206 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unmanned Aerial Vehicle Fleet Selection and Allocation Optimization

    Payan, Alexia / Carvalho, Lourenco Jara De / Mavris, Dimitri N. | TIBKAT | 2019


    Unmanned Aerial Vehicle Fleet Selection and Allocation Optimization

    Payan, Alexia / Jara de Carvalho, Lourenco / Mavris, Dimitri N. | AIAA | 2019


    UNMANNED AERIAL VEHICLE FLEET MANAGEMENT

    SCHMALZRIED JAMES / PRAGER ANDRÉ / KUBIE MARTIN | Europäisches Patentamt | 2020

    Freier Zugriff

    UNMANNED AERIAL VEHICLE FLEET MANAGEMENT

    SCHMALZRIED JAMES / PRAGER ANDRÉ | Europäisches Patentamt | 2020

    Freier Zugriff

    UNMANNED AERIAL VEHICLE FLEET MANAGEMENT

    SCHMALZRIED JAMES / PRAGER ANDRÉ / KUBIE MARTIN | Europäisches Patentamt | 2022

    Freier Zugriff