Conventional treatment of visual tracking has been to optimize an objective function in a probabilistic framework. In this formulation, efficient algorithms employing simple prior distributions are usually insufficient to handle clutters (e.g., Kalman filter). On the other hand, distributions that are complex enough to incorporate all a priori knowledge can make the problem computationally intractable (e.g., particle filters (PF)). This paper proposes a new formulation of visual tracking where every piece of information, be it from a priori knowledge or observed data, is represented by a set in the solution space and the intersection of these sets, the feasibility set, represents all acceptable solutions. Based on this formulation, we propose an algorithm whose objective is to find a solution in the feasibility set. We show that this set theoretic tracking algorithm performs effective face tracking and is computationally more efficient than standard PF-based tracking.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time tracking with multiple cues by set theoretic random search


    Beteiligte:
    Cheng Chang, (Autor:in) / Ansari, R. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    401510 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TRACKING OBJECTS WITH MULTIPLE CUES

    CHEN I-KUEI | Europäisches Patentamt | 2019

    Freier Zugriff

    TRACKING OBJECTS WITH MULTIPLE CUES

    CHEN I-KUEI | Europäisches Patentamt | 2019

    Freier Zugriff

    Tracking objects with multiple cues

    CHEN I-KUEI | Europäisches Patentamt | 2021

    Freier Zugriff

    Using Multiple Cues for Hand Tracking and Model Refinement

    Lu, S. / Metaxas, D. / Samaras, D. et al. | British Library Conference Proceedings | 2003