This research manuscript delves into the employment of advanced technologies for the enhancement of traffic efficiency, leveraging real-time data and deep reinforcement learning methodologies. We focus on the formulation of a specialized Deep Q-learning agent, capable of effectively managing traffic light operations at an isolated junction, utilizing real-time GPS data. The amalgamation of deep neural networks with the Q-learning component of reinforcement learning enables the agent to refine traffic signal control strategies. The Deep Q-Network (DQN) algorithm is utilized, in combination with replay memory and a target network, to bolster and stabilize the learning journey. The agent’s training process employs Q-learning with experience replay within the traffic simulator SUMO, fostering the production of traffic signal control policies. The suggested method aspires to curtail traffic congestion and reduce waiting periods by facilitating intersections to make judicious decisions premised on their real-time status. The metrics are queue length and reward of the agent which are carefully monitored for the best result.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Traffic Efficiency through Real-Time Traffic Signal Control Using Deep Q-Learning


    Beteiligte:


    Erscheinungsdatum :

    01.12.2023


    Format / Umfang :

    1071240 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    - ON-DEVICE REAL-TIME TRAFFIC SIGNAL CONTROL SYSTEM BASED ON DEEP LEARNING

    TAEHA YU / KYUYOUNG SIM / SUKYOUNG CHO et al. | Europäisches Patentamt | 2022

    Freier Zugriff


    Real Time Traffic Sign Classification Using Deep Learning

    Gurupriya, M. / Veluru, Abhilash / Venkat, Hruday et al. | Springer Verlag | 2025

    Freier Zugriff

    REAL TIME TRAFFIC SIGNAL CONTROL SYSTEM

    LEE DONG JU / KIM DAE SIG | Europäisches Patentamt | 2016

    Freier Zugriff

    Deep Learning Agent for Traffic Signal Control

    Chitti, T N / Sanapala, Praneeth / Punith, C et al. | IEEE | 2024