Accurate and robust lane results are of great significance in any driving-assistance system. To achieve robustness and accuracy in difficult scenarios, probabilistic estimation techniques are needed to compensate for the errors in the detection of lane-delimiting features. This paper presents a solution for lane estimation in difficult scenarios based on the particle-filtering framework. The solution employs a novel technique for pitch detection based on the fusion of two stereovision-based cues, a novel method for particle measurement and weighing using multiple lane-delimiting cues extracted by grayscale and stereo data processing, and a novel method for deciding upon the validity of the lane-estimation results. Initialization samples are used for uniform handling of the road discontinuities, eliminating the need for explicit track initialization. The resulting solution has proven to be a reliable and fast lane detector for difficult scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Probabilistic Lane Tracking in Difficult Road Scenarios Using Stereovision


    Beteiligte:
    Danescu, R. (Autor:in) / Nedevschi, S. (Autor:in)


    Erscheinungsdatum :

    01.06.2009


    Format / Umfang :

    1013261 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A stereovision-based probabilistic lane tracker for difficult road scenarios

    Danescu, Radu / Nedevschi, Sergiu / Meinecke, Marc-Michael et al. | IEEE | 2008


    A Stereovision-Based Probabilistic Lane Tracker for Difficult Road Scenarios

    Danescu, R.G. / Nedevschi, S. / Meinecke, M.-M. et al. | British Library Conference Proceedings | 2008


    New Results in Stereovision Based Lane Tracking

    Danescu, R.G. / Nedevschi, S. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2011


    New results in stereovision based lane tracking

    Danescu, R. / Nedevschi, S. | IEEE | 2011