Sea transportation has become the principal mode of transportation. It is of great significance to accurately predict the estimated time of arrival (ETA) of the liner carriage. This paper proposes a model based on deep learning algorithm to deal with liner arrival time prediction in sea transportation. Two data cleaning algorithms and one data enhancement algorithm are presented, with data cleaning effectively cleaning the GPS data generated by the liner and data enhancement increasing the diversity of data samples. A method based on deep learning to predict liner arrival time is provided, using the Factorization Machine (FM) model to generate second-order crossover features, and grouped convolution and attention mechanisms to enhance the representation ability of the model. Experiments show that the method proposed control the prediction error better than traditional machine learning models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting Liner Arrival Time Based on Deep Learning


    Beteiligte:
    Huang, Chao (Autor:in) / Huang, Yuqi (Autor:in) / Yu, Yang (Autor:in) / Xiao, Bo (Autor:in)


    Erscheinungsdatum :

    20.10.2021


    Format / Umfang :

    1176364 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-time predicting method for arrival time of bus

    HE ZHAOCHENG / DENG LINGLI / ZHONG RENXIN | Europäisches Patentamt | 2015

    Freier Zugriff

    Bus arrival time prediction method based on spatial-temporal feature deep learning

    LI YI / ZHANG MINGZE / YANG WENQIANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Predicting Arrival and Departure Runway Assignments with Machine Learning

    A. Churchill / W. J. Coupe / Y. C. Jung | NTIS | 2021


    Predicting Arrival and Departure Runway Assignments with Machine Learning

    A. Churchill / W. J. Coupe / Y. Jung | NTIS | 2021


    Predicting Arrival and Departure Runway Assignments with Machine Learning

    Andrew Churchill / William J Coupe / Yoon C Jung | NTRS | 2021