Adaptation to changing dynamic situations is yet an open problem for automated driving systems that require robust and efficient solutions. Particularly in the context of motion planning algorithms, this problem is typically addressed by re-planning the whole trajectory or repairing the invalid part. The main drawback of all the current approaches is the increased demand for computational resources, a critical safety issue in automated vehicles. Motivated by this, in this paper we propose a novel and efficient method for trajectory repairing utilizing Bernstein basis polynomials and path-speed decoupling. A robustness metric is introduced to tune the driving behavior. Accurate numerical simulations indicate performance figures typically better than $25ms$ for a feasible solution in representative driving scenarios, which was not achievable in other state-of-the-art approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust Tunable Trajectory Repairing for Autonomous Vehicles Using Bernstein Basis Polynomials and Path-Speed Decoupling


    Beteiligte:
    Tong, Kailin (Autor:in) / Solmaz, Selim (Autor:in) / Horn, Martin (Autor:in) / Stolz, Michael (Autor:in) / Watzenig, Daniel (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    1363875 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Sampling-Based Trajectory Repairing for Autonomous Vehicles

    Lin, Yuanfei / Maierhofer, Sebastian / Althoff, Matthias | IEEE | 2021


    Hermite Interpolation using Bernstein Polynomials for Trajectory Generation

    A. Patterson / G. MacLin / M. Acheson et al. | NTIS | 2023


    On Hermite Interpolation using Bernstein Polynomials for Trajectory Generation

    Andrew Patterson / Gage MacLin / Michael Acheson et al. | NTRS | 2023


    Autonomous Vehicles Lane-Changing Trajectory Planning Based on Hierarchical Decoupling

    Lin, Xinyou / Wang, Tianfeng / Zeng, Songrong et al. | IEEE | 2024