Tracked targets often exhibit common behaviors due to influences from the surrounding environment, such as wind or obstacles, which are usually modeled as noise. Here, these influences are modeled using sparse Gaussian processes that are learned online together with the state inference using an extended Kalman filter. The method can also be applied to time-varying influences and identify simple dynamic systems. The method is evaluated with promising results in a simulation and a real-world application.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning Target Dynamics While Tracking Using Gaussian Processes


    Beteiligte:
    Veiback, Clas (Autor:in) / Olofsson, Jonatan (Autor:in) / Lauknes, Tom Rune (Autor:in) / Hendeby, Gustaf (Autor:in)


    Erscheinungsdatum :

    01.08.2020


    Format / Umfang :

    2226425 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Cost-Effective Gaussian Processes Based Extended Target Tracking

    Yang, Dongsheng / Guo, Yunfei / Yin, Tianxiang et al. | IEEE | 2023


    Zoom on target while tracking

    Micheloni, C. / Foresti, G.L. | IEEE | 2005


    Zoom on Target While Tracking

    Micheloni, C. / Foresti, G. L. | British Library Conference Proceedings | 2005



    Extended Target Tracking using a Gaussian-Mixture PHD Filter

    Granstrom, K. / Lundquist, C. / Orguner, O. | IEEE | 2012