Offloading time-sensitive, computationally intensive tasks—such as advanced learning algorithms for autonomous driving—from vehicles to nearby edge servers, vehicle-to-infrastructure (V2I) systems, or other collaborating vehicles via vehicle-to-vehicle (V2V) communication enhances service efficiency. However, whence traversing the path to the destination, the vehicle’s mobility necessitates frequent handovers among the access points (APs) to maintain continuous and uninterrupted wireless connections to maintain the network’s Quality of Service (QoS). These frequent handovers subsequently lead to task migrations among the edge servers associated with the respective APs. This paper addresses the joint problem of task migration and access-point handover by proposing a deep reinforcement learning framework based on the Deep Deterministic Policy Gradient (DDPG) algorithm. A joint allocation method of communication and computation of APs is proposed to minimize computational load, service latency, and interruptions with the overarching goal of maximizing QoS. We implement and evaluate our proposed framework on simulated experiments to achieve smooth and seamless task switching among edge servers, ultimately reducing latency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Communication-Aware Consistent Edge Selection for Mobile Users and Autonomous Vehicles


    Beteiligte:
    Tahir, Nazish (Autor:in) / Parasuraman, Ramviyas (Autor:in) / Sun, Haijian (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    1033632 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Communication-Aware Consistent Edge Selection for Mobile Users and Autonomous Vehicles

    Tahir, Nazish / Parasuraman, Ramviyas / Sun, Haijian | ArXiv | 2024

    Freier Zugriff

    Users’ Preferences for the Communication with Autonomous Micro-Vehicles

    Lotz, Vivian / Schomakers, Eva-Maria / Ziefle, Martina | IEEE | 2022


    Towards a Resource-Aware K-Selection Model for Optimizing V2X Communication in Autonomous Vehicles

    Ahmed, Olanrewaju / Grace, David / Popoola, Kayode | TIBKAT | 2024

    Freier Zugriff

    CONTEXT AWARE STOPPING FOR AUTONOMOUS VEHICLES

    DYER JOHN WESLEY / TORRES LUIS / EPSTEIN MICHAEL et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    CONTEXT AWARE STOPPING FOR AUTONOMOUS VEHICLES

    DYER JOHN WESLEY / TORRES LUIS / EPSTEIN MICHAEL et al. | Europäisches Patentamt | 2021

    Freier Zugriff