One of the goals in the field of mobile robotics is the development of mobile platforms which operate in populated environments. For many tasks it is therefore highly desirable that a robot can determine the positions of the humans in its surrounding. We introduce sample-based joint probabilistic data association filters to track multiple moving objects with a mobile robot. Our technique uses the robot's sensors and a motion model of the objects being tracked. A Bayesian filtering technique is applied to adapt the tracking process to the number of objects in the sensor range of the robot. Our approach to tracking multiple moving objects has been implemented and tested on a real robot. We present experiments illustrating that our approach is able to robustly keep track of multiple persons even in situations in which people are temporarily occluded. The experiments furthermore show that the approach outperforms other techniques developed so far.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Tracking multiple moving objects with a mobile robot


    Beteiligte:
    Schulz, D. (Autor:in) / Burgard, W. (Autor:in) / Fox, D. (Autor:in) / Cremers, A.B. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    855152 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Tracking Multiple Moving Objects with a Mobile Robot

    Schulz, D. / Burgard, W. / Fox, D. et al. | British Library Conference Proceedings | 2001


    An association algorithm for tracking multiple moving objects

    Lemeret, Y. / Lefevre, E. / Jolly, D. | IEEE | 2006


    Robot walking platform with multiple moving modes and mobile robot

    ZHANG DONGSHENG / QIAN ZEYU | Europäisches Patentamt | 2023

    Freier Zugriff

    A novel bionic mantis shrimp robot for tracking underwater moving objects

    Chen, Gang / Xu, Yidong / Tu, Jiajun et al. | Taylor & Francis Verlag | 2025


    Tracking uncertain moving objects using dynamic track management in Multiple Hypothesis Tracking

    Rahman, Abdul Hadi Abd / Zamzuri, Hairi / Mazlan, Saiful Amri et al. | IEEE | 2014