This paper aims to propose an efficient machine learning framework for maritime big data and use it to train a random forest model to estimate ships’ propulsion power based on ship operation data. The comprehensive data include dynamic operations, ship characteristics and environment. The details of data processing, model configuration, training and performance benchmarking will be introduced. Both scikit-learn and Spark MLlib were used in the process to find the best configuration of hyperparameters. With this combination, the search and training are much more efficient and can be executed on latest cloud-based solutions. The result shows random forest is a feasible and robust method for ship propulsion power prediction on large datasets. The best performing model achieved a R2 score of 0.9238.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Data-Driven Prediction of Ship Propulsion Power Using Spark Parallel Random Forest on Comprehensive Ship Operation Data


    Beteiligte:
    Liang, Qin. (Autor:in) / Vanem, Erik. (Autor:in) / Knutsen, Knut E. (Autor:in) / Zhang, Houxiang. (Autor:in)


    Erscheinungsdatum :

    27.06.2022


    Format / Umfang :

    1341883 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Comprehensive power load prediction method for electric propulsion ship

    LIU HONGDA / XU ZHE / HUANG MANLEI et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    HYBRID PROPULSION SHIP OPERATION METHOD AND HYBRID PROPULSION SHIP

    HATAMOTO TAKURO / TASHIRO SHINJI / HARADA YOTA | Europäisches Patentamt | 2020

    Freier Zugriff

    SHIP PROPULSION SYSTEM AND METHOD OF OPERATION OF SHIP AND SHIP PROPULSION SYSTEM

    ADACHI SHIGETO / NARUKAWA YUTAKA / FUKUDA TAKAYUKI et al. | Europäisches Patentamt | 2016

    Freier Zugriff


    BOG SHIP PROPULSION SYSTEM SHIP PROPULSION METHOD AND PROPULSION SHIP USING BOG

    YOUNG KYUN SEO / EUN YOUNG PARK / JIN TAE KIM et al. | Europäisches Patentamt | 2022

    Freier Zugriff