For the path planning of autonomous vehicles, it is important to predict the future trajectory of the surrounding vehicles. However, predicting future trajectory is difficult because it needs to consider the invisible interaction between the vehicles in a dynamic driving environment. In this paper, a new approach, which considers the interaction between surrounding vehicles, is proposed for accurate prediction of the future trajectory. The proposed method provides continuous predicted trajectories over time in the longitudinal and lateral directions, respectively. The deep ensemble technique is also used to predict the uncertainty of the estimated trajectory. This paper performs the training and verification of the algorithm using NGSIM dataset, which is the vehicle driving data obtained through actual vehicle driving.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Interaction Aware Trajectory Prediction of Surrounding Vehicles with Interaction Network and Deep Ensemble


    Beteiligte:
    Min, Kyushik (Autor:in) / Kim, Hayoung (Autor:in) / Park, Jongwon (Autor:in) / Kim, Dongchan (Autor:in) / Huh, Kunsoo (Autor:in)


    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    1516126 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    SURROUNDING AWARE TRAJECTORY PREDICTION

    ZHANG ETHAN / XIAO HAO / GAN YIQIAN et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Interaction-Based Trajectory Prediction of Surrounding Vehicles with Driving Maneuvers Recognition

    Ren, Hongbin / Zhou, Gaoli / Zhang, Hongwei et al. | Springer Verlag | 2023


    Parametric trajectory prediction of surrounding vehicles

    Kang, Chang Mook / Jeon, Soo Jung / Lee, Seung-Hi et al. | IEEE | 2017


    Interaction-Aware Trajectory Prediction of Connected Vehicles using CNN-LSTM Networks

    Mo, Xiaoyu / Xing, Yang / Lv, Chen | ArXiv | 2020

    Freier Zugriff