The limitations of Global Navigation Satellite System (GNSS) in enclosed spaces have prompted the need for alternative methods for determining the position and navigation of Unmanned Aerial Vehicles (UAVs). One potential solution is to employ visual-based sensors and artificial intelligence (AI) algorithms. This study aims to explore the feasibility of a monocular vision-based positioning system for determining the position of a UAV by placing a sensor in a fixed position and feeding the image stream to an AI algorithm to generate the position and navigation solution. The results of this study could have practical applications, particularly inspection hangars where GNSS cannot be used. Automating the inspection process using UAVs could also help reduce the risk of human injury associated with elevated working spaces by improving the safety and efficiency of the inspection process.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Development of an Indoor Visual-Based Monocular Positioning System for Multirotor UAV




    Erscheinungsdatum :

    26.10.2023


    Format / Umfang :

    466543 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Indoor positioning method based on monocular image stitching

    MO LINHONG / LIU JING / QUAN WENLONG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    System and method of multirotor dynamics based online scale estimation for monocular vision

    LUDHIYANI MOHIT / RUSTAGI VISHVENDRA / SINHA ARNAB et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Location Drift Detection Method for Monocular Vision based Indoor Positioning

    Jia, Shuang / Ma, Lin / Wei, Shouming et al. | IEEE | 2022


    Multirotor

    HE CHUNWANG | Europäisches Patentamt | 2015

    Freier Zugriff

    Development of Dual Power Multirotor System

    Chin E. Lin / Thanakorn Supsukbaworn | DOAJ | 2017

    Freier Zugriff