The computation of optical flow relies on merging information available over an image patch to form an estimate of 2-D image velocity at a point. This merging process raises many issues. These include the treatment of outliers in component velocity measurements and the modeling of multiple motions within a patch which arise from occlusion boundaries or transparency. A new approach for dealing with these issues is presented. It is based on the use of a probabilistic mixture model to explicitly represent multiple motions within a patch. A simple extension of the EM-algorithm is used to compute a maximum likelihood estimate for the various motion parameters. Preliminary experiments indicate that this approach is computationally efficient, and that it can provide robust estimates of the optical flow values in the presence of outliers and multiple motions.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mixture models for optical flow computation


    Beteiligte:
    Jepson, A. (Autor:in) / Black, M.J. (Autor:in)


    Erscheinungsdatum :

    01.01.1993


    Format / Umfang :

    180094 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multispectral constraints for optical flow computation

    Markandey, V. / Flinchbaugh, B.E. | IEEE | 1990


    Diffusion constructs in optical flow computation

    Condell, J. V. / Scotney, B. W. / Morrow, P. J. | British Library Online Contents | 2005


    Superpipelined high-performance optical-flow computation architecture

    Diaz, J. / Ros, E. / Agis, R. et al. | British Library Online Contents | 2008


    Optical flow modeling and computation: A survey

    Fortun, D. / Bouthemy, P. / Kervrann, C. | British Library Online Contents | 2015


    Salient Feature Detection for optical flow computation

    Jiaoru Yang / Wang, Rui / Rui Xu | IEEE | 2016