A dynamic block scale-invariant (DBSI) method for extracting salient feature key points that can be used to perform fast and accurate sparse optical flow computation is presented. With a more in-depth development and analysis of the Dynamic Block-Based feature selection and the Scale-space Extrema Detection stage, we propose a solution that correctly estimated the optical flow 2D motion vectors in the region of DBSI salient features, which are robust against noise, brightness and scale changes. The effectiveness of our method is demonstrated on the Middlebury optical flow benchmark and the experiment results show that it is competitive with the state-of-the-art.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Salient Feature Detection for optical flow computation


    Beteiligte:
    Jiaoru Yang (Autor:in) / Wang, Rui (Autor:in) / Rui Xu (Autor:in)


    Erscheinungsdatum :

    01.08.2016


    Format / Umfang :

    242222 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SALIENT FEATURE BASED VEHICLE POSITIONING

    ZHAO CONG | Europäisches Patentamt | 2017

    Freier Zugriff

    Salient feature based vehicle positioning

    ZHAO CONG | Europäisches Patentamt | 2020

    Freier Zugriff

    Salient Object Detection: A Discriminative Regional Feature Integration Approach

    Wang, J. / Jiang, H. / Yuan, Z. et al. | British Library Online Contents | 2017


    Selective salient feature based lane analysis

    Satzoda, R. K. / Trivedi, Mohan M. | IEEE | 2013