Change detection is an important topic in remote sensing to study the effects of climate change, natural disasters, urbanization, etc. However, the need for labeled data has posed significant challenges. In this paper, we introduce a self-supervised learning model to overcome this problem. To evaluate our model performance, we propose a novel evaluation metric called recall-based operational reliability. In our study, we used a large-scale multispectral image dataset called DynamicEarthNet for testing.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Large Scale Multispectral Image Dataset Change Detection Based on Self-Supervised Learning with Novel Evaluation Metric


    Beteiligte:


    Erscheinungsdatum :

    15.07.2024


    Format / Umfang :

    2220121 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Learning a nonlinear distance metric for supervised region-merging image segmentation

    Sobieranski, A. C. / Comunello, E. / von Wangenheim, A. | British Library Online Contents | 2011


    Shared median-scaling metric for multi-camera self-supervised depth evaluation

    GUIZILINI VITOR / AMBRUS RARES ANDREI / GAIDON ADRIEN DAVID et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    A New Pedestrian Dataset for Supervised Learning

    Overett, G.M. / Petersson, L. / Brewer, N. et al. | British Library Conference Proceedings | 2008


    Scenario-based threat metric evaluation based on the highd dataset

    Schneider, Patrick / Butz, Martin / Heinzemann, Christian et al. | IEEE | 2020


    A new pedestrian dataset for supervised learning

    Overett, Gary / Petersson, Lars / Brewer, Nathan et al. | IEEE | 2008