This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A new pedestrian dataset for supervised learning


    Beteiligte:
    Overett, Gary (Autor:in) / Petersson, Lars (Autor:in) / Brewer, Nathan (Autor:in) / Andersson, Lars (Autor:in) / Pettersson, Niklas (Autor:in)


    Erscheinungsdatum :

    01.06.2008


    Format / Umfang :

    476868 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A New Pedestrian Dataset for Supervised Learning

    Overett, G.M. / Petersson, L. / Brewer, N. et al. | British Library Conference Proceedings | 2008


    Subway Station Pedestrian Dataset

    He, Gaoqi | DataCite | 2024


    Car Pedestrian Interaction (CPI) dataset

    Makansi, Osama | DataCite | 2024



    Pedestrian Orientation Estimation using On-board Monocular Camera with Semi-Supervised Learning

    Yano, S. / Gu, Y. / Kamijo, S. et al. | British Library Conference Proceedings | 2014