We propose a model-based tracking method, called appearance-guided particle filtering (AGPF), which integrates both sequential motion transition information and appearance information. A probability propagation model is derived from a Bayesian formulation for this framework, and a sequential Monte Carlo method is introduced for its realization. We apply the proposed method to articulated hand tracking, and show that it performs better than methods that only use either sequential motion transition information or only use appearance information.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Appearance-guided particle filtering for articulated hand tracking


    Beteiligte:
    Wen-Yan Chang, (Autor:in) / Chu-Song Chen, (Autor:in) / Yi-Ping Hung, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    747209 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Model-based 3D tracking of an articulated hand

    Stenger, B. / Mendonca, P.R.S. / Cipolla, R. | IEEE | 2001


    Tracking Articulated Hand Motion with Eigen Dynamics Analysis

    Zhou, H. / Huang, T. / IEEE | British Library Conference Proceedings | 2003


    Model-Based 3D Tracking of an Articulated Hand

    Stenger, B. / Mendonca, P. R. S. / Cipolla, R. et al. | British Library Conference Proceedings | 2001



    Attractor-Guided Particle Filtering for Lip Contour Tracking

    Jian, Y.-D. / Chang, W.-Y. / Chen, C.-S. | British Library Conference Proceedings | 2006