This paper introduces the concept of eigen-dynamics and proposes an eigen dynamics analysis (EDA) method to learn the dynamics of natural hand motion from labelled sets of motion captured with a data glove. The result is parameterized with a high-order stochastic linear dynamic system (LDS) consisting of five lower-order LDS. Each corresponding to one eigen-dynamics. Based on the EDA model, we construct a dynamic Bayesian network (DBN) to analyze the generative process of a image sequence of natural hand motion. Using the DBN, a hand tracking system is implemented. Experiments on both synthesized and real-world data demonstrate the robustness and effectiveness of these techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Tracking articulated hand motion with eigen dynamics analysis


    Beteiligte:
    Hanning Zhou, (Autor:in) / Huang, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    898940 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Tracking Articulated Hand Motion with Eigen Dynamics Analysis

    Zhou, H. / Huang, T. / IEEE | British Library Conference Proceedings | 2003


    Model-based articulated hand motion tracking for gesture recognition

    Lien, C.-C. / Huang, C.-L. | British Library Online Contents | 1998


    Trajectories, Stability of Motion and Eigen-Oscillations of Articulated Multi-unit Vehicles

    Lobas, L. G. / Technical University of Budapest | British Library Conference Proceedings | 1992


    Tracking Articulated Hand Underlying Graphical Model with Depth Cue

    Liu, Tangli / Liang, Wei / Wu, Xinxiao et al. | IEEE | 2008


    Appearance-guided particle filtering for articulated hand tracking

    Wen-Yan Chang, / Chu-Song Chen, / Yi-Ping Hung, | IEEE | 2005