This work proposes a system that utilizes infrastructure-mounted cameras to estimate the position and orientation of vehicles, generating and controlling paths based on this data. The Hybrid A* algorithm is used to plan paths, the Pure Pursuit method is used to follow these paths, and the YOLO11m-pose model is used to estimate pose. The proposed approach addresses the limitations of restricted visibility and enables reliable navigation in complex environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Driving Vehicle Control Using YOLO11-Based Pose Estimation with Infrastructure Sensors


    Beteiligte:
    Choi, Yeong Gwang (Autor:in) / Kim, Eun Ho (Autor:in) / Suh, Young Hoon (Autor:in) / Jeon, Jae Wook (Autor:in)


    Erscheinungsdatum :

    24.02.2025


    Format / Umfang :

    781957 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-Class Vehicle Detection and Classification with YOLO11 on UAV-Captured Aerial Imagery

    Bakirci, Murat / Dmytrovych, Petro / Bayraktar, Irem et al. | IEEE | 2024


    Object prediction and detection of ground-based weapon with an improved YOLO11 approach

    Hanyul Ryu / Mingyu Park / Dae-Yeol Kim | DOAJ | 2024

    Freier Zugriff

    CONTROLLING VEHICLE-INFRASTRUCTURE COOPERATED AUTONOMOUS DRIVING

    YANG GUOYI / ZHANG WEN / YANG FAN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    AUTONOMOUS DRIVING VEHICLE AND INFRASTRUCTURE FOR SUPPORTING AUTONOMOUS DRIVING THEREOF

    KWAK DONG YONG | Europäisches Patentamt | 2015

    Freier Zugriff

    Object prediction and detection of ground-based weapon with an improved YOLO11 approach

    Hanyul Ryu / Mingyu Park / Dae-Yeol Kim | DOAJ | 2024

    Freier Zugriff