Application specific instrumentation (ASIN) makes use of sensors and AI (SensAI) algorithms for a highly specialized application, using less computational overhead, it can give good performance. This work evaluates the performance of communication based sensing (CommSense) system using Principal Component Analysis (PCA), kernel PCA (KPCA), t-distributed Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) algorithms and their quality of projection. In this paper, we have used Earth Mover’s Distance (EMD) (also known as 1st Wasserstein Distance (WD)) for assessing the projections and we reach at the conclusion that, in terms of implementation PCA is the best, but for visualization KPCA, t-SNE and UMAP perform better than PCA.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluation of visualization algorithms for CommSense system


    Beteiligte:


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    724483 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LTE commsense for object detection in indoor environments

    Sardar, Santu / Mishra, Amit K. / Khan, M. Z. A. | IEEE | 2018




    Metric visualization system for model evaluation

    BESSON CLEMENT / PURDY SCOTT M / RAGHAVAN BHARADWAJ | Europäisches Patentamt | 2024

    Freier Zugriff

    METRIC VISUALIZATION SYSTEM FOR MODEL EVALUATION

    BESSON CLEMENT / PURDY SCOTT M / RAGHAVAN BHARADWAJ | Europäisches Patentamt | 2025

    Freier Zugriff