Each year, 1.35 million people die and over 50 million are injured in traffic accidents. Over half of fatal accidents are due to aggressive driving behaviors. Machine learning analytic strategies hold promise in helping to identify aggressive driving behaviors within real world driving (RWD) datasets, but innovative strategies are required in order to achieve this promise. Herein, we introduce and define Iterative DBSCAN (I-DBSCAN), an extension of the Density Based Spatial Clustering of Applications with Noise algorithm, as one tool that can be utilized as part of a machine learning analytic strategy for identifying aggressive driving behaviors within large, unlabeled RWD datasets. Further, we provide a case example of I-DBSCAN’s application and discuss how its application can enhance efforts to identify aggressive driving and improve overall traffic safety.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Iterative DBSCAN (I-DBSCAN) to Identify Aggressive Driving Behaviors within Unlabeled Real-World Driving Data


    Beteiligte:


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    314888 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Distributed Multi-Target Tracking with D-DBSCAN Clustering

    Xu, Shuoyuan / Shin, Hyo-Sang / Tsourdos, Antonios | IEEE | 2019


    Grid-based DBSCAN for clustering extended objects in radar data

    Kellner, Dominik / Klappstein, Jens / Dietmayer, Klaus | IEEE | 2012


    Grid-Based DBSCAN for Clustering Extended Objects in Radar Data

    Kellner, D. / Klappstein, J. / Dietmayer, K. et al. | British Library Conference Proceedings | 2012


    DBSCAN Based Parameter Optimization of KPCA for Fault Diagnosis

    Shaojun, Liang / Xing, Zheng / Lipeng, Xie et al. | Springer Verlag | 2021