A method may include receiving training data comprising a time series of gaps between an ego vehicle and one or more lead vehicles at a plurality of time steps, embedding the training data into a fixed-length sequence, inputting the fixed-length sequence into a Transformer-RNN model comprising a Transformer component and an RNN component, wherein the transformer component applies attention to each data point of the fixed-length sequence based on a fixed number of previous inputs, and training the Transformer-RNN model, using the training data, to output a predicted gap at a future time step based on an input sequence of gaps.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    METHOD AND SYSTEM FOR PERSONALIZED CAR FOLLOWING WITH TRANSFORMERS AND RNNS


    Beteiligte:
    WANG ZIRAN (Autor:in) / HAN KYUNGTAE (Autor:in) / GUPTA ROHIT (Autor:in)

    Erscheinungsdatum :

    18.04.2024


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion



    Method and system for personalized car following with transformers and RNNs

    WANG ZIRAN / HAN KYUNGTAE / GUPTA ROHIT | Europäisches Patentamt | 2025

    Freier Zugriff

    GapFormer: Fast Autoregressive Transformers meet RNNs for Personalized Adaptive Cruise Control

    Sachdeva, Noveen / Wang, Ziran / Han, Kyungtae et al. | IEEE | 2022


    Method and system for personalized car following with transformers

    WANG ZIRAN / ZHAO ZHOUQIAO / GUPTA ROHIT et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    METHOD AND SYSTEM FOR PERSONALIZED CAR FOLLOWING WITH TRANSFORMERS

    WANG ZIRAN / ZHAO ZHOUQIAO / GUPTA ROHIT et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Multi-Level Contextual RNNs With Attention Model for Scene Labeling

    Fan, Heng / Mei, Xue / Prokhorov, Danil et al. | IEEE | 2018