A bot traffic detection system detects scripted network traffic. The bot traffic detection system may use a one-sided unsupervised machine learning technique to estimate distributions for human, non-scripted traffic (clean distributions). The clean distributions may be dynamically updated based on the latest traffic patterns. To estimate the clean distributions the bot traffic detection system may identify, for a certain subset of network traffic, feature values of the certain subset of network traffic that do not include bot traffic (clean buckets). Using clean traffic may provide more robust and stable behavior that can be tracked over time. Using the clean distributions, the bot traffic detection system may generate a rules table that indicates a likelihood that network traffic with a given combination of feature values is scripted network traffic. The bot traffic detection system may apply the rules table in real time to identify scripted network traffic.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    METHOD AND APPARATUS TO DETECT SCRIPTED NETWORK TRAFFIC


    Beteiligte:
    HERLEY CORMAC (Autor:in) / TU FANG (Autor:in) / CAO CHENG (Autor:in) / PILLAI JAYADEV (Autor:in)

    Erscheinungsdatum :

    23.12.2021


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Detect-and-Avoid: Flight Test 6 Scripted Encounters Data Analysis

    Wang, Wei-Ching / Wu, M. Gilbert | NTRS | 2020


    Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study

    Jarjour, Sarah / Jerrett, Michael / Westerdahl, Dane et al. | Springer Verlag | 2013

    Freier Zugriff

    Gesture recognition corpora and tools: A scripted ground truthing method

    Ruffieux, S. / Lalanne, D. / Mugellini, E. et al. | British Library Online Contents | 2015


    Scripted Hybrid Mesh Adaption for High Incidence RANS Flows About Axisymmetric Shapes

    Watt, George / Baker, Christopher / Gerber, Andrew et al. | AIAA | 2006


    Using Cross Entropy to Detect and Classify Network Anomalous Traffic

    Yan, R. / Zheng, Q. | British Library Online Contents | 2010