This disclosure relates to improved vehicle re-identification techniques. The techniques described herein utilize artificial intelligence (AI) and machine learning functions to re-identify vehicles across multiple cameras. Vehicle re-identification can be performed using an image of the vehicle that is captured from any single viewpoint. Attention maps may be generated that identify regions of the vehicle that include visual patterns that overlap between the viewpoint of the captured image and one or more additional viewpoints. The attention maps are used to generate a multi-view representation of the vehicle that provides a global view of the vehicle across multiple viewpoints. The multi-view representation of the vehicle can then be compared to previously captured image data to perform vehicle re-identification.
VEHICLE RE-IDENTIFICATION TECHNIQUES USING NEURAL NETWORKS FOR IMAGE ANALYSIS, VIEWPOINT-AWARE PATTERN RECOGNITION, AND GENERATION OF MULTI-VIEW VEHICLE REPRESENTATIONS
VERFAHREN ZUR NEUIDENTIFIKATION EINES FAHRZEUGS UNTER VERWENDUNG NEURONALER NETZE FÜR BILDANALYSE, BLICKPUNKTBEWUSSTE MUSTERERKENNUNG UND ERZEUGUNG VON FAHRZEUGDARSTELLUNGEN MIT MEHREREN ANSICHTEN
TECHNIQUES DE RÉIDENTIFICATION DE VÉHICULE UTILISANT DES RÉSEAUX NEURONAUX POUR UNE ANALYSE D'IMAGE, UNE RECONNAISSANCE DE MOTIF SENSIBLE AU POINT DE VUE ET LA GÉNÉRATION DE REPRÉSENTATIONS DE VÉHICULE MULTIVUES
09.03.2022
Patent
Elektronische Ressource
Englisch
Europäisches Patentamt | 2020
|Europäisches Patentamt | 2019
|Identification and Recognition of Vehicle Environment Using Artificial Neural Networks
Springer Verlag | 2018
|