Abstract Distributed Synthetic Aperture Radar (DSAR) is one of the most promising approaches to enable the utilization of small satellite platforms for gathering radar images as well as reducing the time-to-market and costs. The paper aims at estimating the main imaging properties achievable by a DSAR under realistic satellite trajectories and working conditions. To this end, a simulation environment has been developed in which DSAR performance has been investigated including the most significant error sources, i.e. radar synchronization errors, position and pointing errors, co-registration errors, antenna pattern errors and signal noise. The estimation has been carried out considering satellite formations with both a relevant along-track distance among the receivers and a dominant cross-track/vertical separation, to investigate different application scenarios. The conducted sensitivity analysis provides some valuable insights into the uncertainty in the error sources which can be tolerated. From an application perspective, the results show that the impact of the error sources can be made negligible thus confirming that DSAR enables azimuth ambiguity suppression, SNR improvement and coherent resolution enhancement. Moreover, DSAR can achieve an accuracy in pointing, antenna pattern, coregistration, and the clock error, in line with well-assessed techniques.

    Highlights The real performance of a distributed SAR (DSAR) system has been not yet verified. Analytical models are not adequate to include all error sources affecting a DSAR. a simulation environment is built to model the most significant error sources. DSAR performance analysis has enabled the estimation of the main imaging parameters. Results confirms DSAR as a viable solution against the limits of monolithic systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Error sources and sensitivity analysis in formation flying synthetic aperture radar


    Beteiligte:

    Erschienen in:

    Acta Astronautica ; 192 ; 97-112


    Erscheinungsdatum :

    2021-10-12


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying

    Krieger, Gerhard / Hajnsek, Irena / Papathanassiou, Konstantinos et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2010

    Freier Zugriff

    PRECURSOR OF A FORMATION FLYING SYNTHETIC APERTURE RADAR (FF-SAR) BY A CLUSTER OF CUBESATS

    Renga, Alfredo / Grasso, Marco / Graziano, Maria Daniela et al. | TIBKAT | 2021


    Synthetic aperture radar

    Tema Archiv | 1976


    Synthetic Aperture Radar

    Doerry, A. W. / Dickey, F. M. | British Library Online Contents | 2004


    Synthetic Aperture Radar

    Brown, William M. | IEEE | 1967