Recent research has shown that guiding sampling-based planners with sampling distributions, learned from previous experiences via density estimation, can significantly decrease computation times for motion planning. We propose an algorithm that can estimate the density from the experiences of a robot with different kinematic structure, on the same task. The method allows to generalize collected data from one source manipulator to similarly designed target manipulators, significantly reducing the computation time for new queries for the target manipulator. We evaluate the algorithm in two experiments, including a constrained manipulation task with five different collaborative robots, and show that transferring information can significantly decrease planning time.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Kinematic transfer learning of sampling distributions for manipulator motion planning



    Kongress:

    2022 ; Philadelphia, USA



    Erscheinungsdatum :

    01.05.2022



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Kinematic Modeling and Motion Planning of the Mobile Manipulator Agri.Q for Precision Agriculture

    Giovanni Colucci / Andrea Botta / Luigi Tagliavini et al. | BASE | 2022

    Freier Zugriff

    KINEMATIC MOTION PLANNING WITH REGIONAL PLANNING CONSTRAINTS

    CHEREPINSKY IGOR / DING XUCHU / SANE HARSHAD S | Europäisches Patentamt | 2020

    Freier Zugriff

    Kinematic motion planning with regional planning constraints

    CHEREPINSKY IGOR / DING XUCHU / SANE HARSHAD S | Europäisches Patentamt | 2018

    Freier Zugriff

    Kinematics Modeling and Motion Planning of Continuum Manipulator

    Zhu, Yi / Zeng, Haibin / Zou, Shuangquan et al. | Springer Verlag | 2023


    Active manipulator motion planning for planetary landform awareness

    Leng, Shu / Hu, Haochen / Yu, Meng et al. | SAGE Publications | 2019