An aspect includes a method of kinematic motion planning includes accessing a list of a plurality of nodes defining a plurality of potential kinematic path locations between a starting position and an ending position of a vehicle. A plurality of constraint sets is determined that apply one or more vehicle motion constraints based on a plurality of spatial regions defined between the starting position and the ending position. The constraint sets are applied in determining a plurality of connections between the nodes to form a kinematic motion path based on locations of the nodes relative to the spatial regions. The kinematic motion path is output to a dynamic path planner to complete creation of a motion path plan for the vehicle.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Kinematic motion planning with regional planning constraints


    Beteiligte:
    CHEREPINSKY IGOR (Autor:in) / DING XUCHU (Autor:in) / SANE HARSHAD S (Autor:in)

    Erscheinungsdatum :

    13.11.2018


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES , Systeme zum Steuern oder Regeln nichtelektrischer veränderlicher Größen / G01C Messen von Entfernungen, Höhen, Neigungen oder Richtungen , MEASURING DISTANCES, LEVELS OR BEARINGS / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    KINEMATIC MOTION PLANNING WITH REGIONAL PLANNING CONSTRAINTS

    CHEREPINSKY IGOR / DING XUCHU / SANE HARSHAD S | Europäisches Patentamt | 2020

    Freier Zugriff

    MOTION PLANNING WITH CASTER CONSTRAINTS

    KAUFMAN EVAN THOMAS / GOINS ZACHARY AUSTIN | Europäisches Patentamt | 2024

    Freier Zugriff

    Path planning under kinematic constraints by rapidly exploring manifolds

    Jaillet, Leonard Georges / Porta Pleite, Josep Maria | BASE | 2013

    Freier Zugriff

    UAV path planning with kinematic constraints based on deep reinforcement learning

    Gao, Mingsheng / Zhang, Xiaoxuan | British Library Conference Proceedings | 2022