Accurate obstacle detection plays a crucial role in the creation of high-precision maps within unstructured terrain environments, as it supplies vital decision-making information for unmanned engineering vehicles. Existing works primarily focus on the semantic segmentation of terrain environments, overlooking the safety aspect of vehicle driving. This paper presents a hazardous obstacle detection framework in addition to driving safety-assured semantic information in the generated high-precision map of unstructured scenarios. The framework encompasses the following key steps. Firstly, a continuous terrain point cloud model is obtained, and a pre-processing algorithm is designed to filter noise and fill holes in the point cloud dataset. The Sobel-G operator is then utilized to establish a digital gradient model, facilitating the labeling of hazardous obstacles. Secondly, a bidirectional long short-term memory (Bi-LSTM) neural network is trained on obstacle categories. Finally, by considering the geometric driving state of the vehicle, obstacles that pose safety risks to the vehicle are accurately extracted. The proposed algorithm is validated through experiments conducted on existing datasets as well as real, unstructured terrain point clouds reconstructed by drones. The experimental results affirm the accuracy and feasibility of the proposed algorithm for obstacle information extraction in unstructured scenes.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    A Safety-Assured Semantic Map for an Unstructured Terrain Environment towards Autonomous Engineering Vehicles


    Beteiligte:
    Shuang Song (Autor:in) / Tengchao Huang (Autor:in) / Chenyang Li (Autor:in) / Guifang Shao (Autor:in) / Yunlong Gao (Autor:in) / Qingyuan Zhu (Autor:in)


    Erscheinungsdatum :

    2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    SAFETY-ASSURED REMOTE DRIVING FOR AUTONOMOUS VEHICLES

    OSTAFEW CHRISTOPHER / AGUIAR THIAGO / KOBASHI ATSUHIDE et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    SAFETY-ASSURED REMOTE DRIVING FOR AUTONOMOUS VEHICLES

    OSTAFEW CHRISTOPHER / AGUIAR THIAGO / KOBASHI ATSUHIDE et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Safety-Assured Design and Adaptation of Connected and Autonomous Vehicles

    Chen, Xin / Fan, Jiameng / Huang, Chao et al. | Springer Verlag | 2023


    Real-Time Safety-Assured Autonomous Aircraft

    Chambers, Jeffrey T. / Baltadjiev, Nikola / Cowlagi, Raghvendra V. | AIAA | 2016


    AUTONOMOUS PERCEPTION AND TERRAIN RECONSTRUCTION OF UNSTRUCTURED LUNAR COMPLEX ENVIRONMENT: A REVIEW

    Liang, Qiming / Zheng, Zixuan / Yuan, Jianping et al. | TIBKAT | 2023