The urban aerial mobility (UAM) system, such as drone taxi or air taxi, is one of future on-demand transportation networks. Among them, electric vertical takeoff and landing (eVTOL) is one of UAM systems that is for identifying the locations of passengers, flying to the positions where the passengers are located, loading the passengers, and delivering the passengers to their destinations. In this paper, we propose a distributed deep reinforcement learning where the agents are formulated as eVTOL vehicles that can compute the optimal passenger transportation routes under the consideration of passenger behaviors, collisions among eVTOL, and eVTOL battery status.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Distributed deep reinforcement learning for autonomous aerial eVTOL mobility in drone taxi applications


    Beteiligte:
    Won Joon Yun (Autor:in) / Soyi Jung (Autor:in) / Joongheon Kim (Autor:in) / Jae-Hyun Kim (Autor:in)


    Erscheinungsdatum :

    2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt







    DRONE TAXI SYSTEM BASED ON MULTI-AGENT REINFORCEMENT LEARNING AND DRONE TAXI OPERATION USING THE SAME

    KIM JOONGHEON / YUN WON JOON / KIM JAE-HYUN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    DEEP REINFORCEMENT LEARNING FOR EVTOL HOVERING CONTROL

    Alarcon, D. S. / Bidinotto, J. H. | British Library Conference Proceedings | 2022