Assembly tasks performed with a robot often fail due to unforeseen situations, regardless of the fact that we carefully learned and optimized the assembly policy. This problem is even more present in humanoid robots acting in an unstructured environment where it is not possible to anticipate all factors that might lead to the failure of the given task. In this work, we propose a concurrent LfD framework, which associates demonstrated exception strategies to the given context. Whenever a failure occurs, the proposed algorithm generalizes past experience regarding the current context and generates an appropriate policy that solves the assembly issue. For this purpose, we applied PCA on force/torque data, which generates low dimensional descriptor of the current context. The proposed framework was validated in a peg-in-hole (PiH) task using Franka-Emika Panda robot. ; This is the author submitted version to ICRA 2020. For the publisher version, please access 10.1109/ICRA40945.2020.9197480.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Learning of Exception Strategies in Assembly Tasks


    Beteiligte:
    Nemec, Bojan (Autor:in) / Simonič, Mihael (Autor:in) / Ude, Aleš (Autor:in)

    Erscheinungsdatum :

    31.05.2020



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629





    TELEOPERATION FOR EXCEPTION HANDLING

    PEDERSEN LIAM / MORTAZAVI ALI / WITWICKI STEFAN et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Towards Learning by Demonstration for Industrial Assembly Tasks

    Hernandez Moreno, Victor / Carmichael, Marc G. / Deuse, Jochen | Springer Verlag | 2023

    Freier Zugriff

    Exception handling for autonomous vehicles

    LI DONG / MCNAUGHTON MATTHEW / YEHOSHUA SHIR et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Porsche 928 S4, l exception

    Porsche,Stuttgart,DE | Kraftfahrwesen | 1987